Утверждаю

Директор Федерального государственного бюджетного учреждения науки Новосибирский институт органической химии им. Н.Н. Ворожцова

Сибирского отделения оссийской академии наук д.ф.-м.н., профессор

Е.Г. Багрянская

17» 06 2021 r.

ЗАКЛЮЧЕНИЕ

Федерального государственного бюджетного учреждения науки Новосибирского института органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук (ФГБУН НИОХ СО РАН).

Диссертация Чернышова Владимира Владимировича «Синтез новых гетероциклических соединений с одним и двумя атомами азота из новых гетероциклических соединений с одним и двумя атомами азота из [2.2.1]-бициклических кетонов и их производных» выполнена в Лаборатории физиологически активных веществ (ЛФАВ) НИОХ СО РАН.

Соискатель Чернышов В.В. работал с 2015 г. в должности лаборанта в ФГБУН НИОХ СО РАН в ЛФАВ, а с 2017 г. в должности младшего научного сотрудника. В 2018 г. переведен в ЛНТПС НИОХ СО РАН на должность младшего научного сотрудника.

В 2017 году окончил Новосибирский Государственный Университет по специальности «Химия», с августа 2017 г, по настоящее время обучается в очной аспирантуре НИОХ СО РАН (приказ о зачислении № 57 от 28.07.2017 г).

Удостоверение о сдаче кандидатских экзаменов выдано в 2021 г. ФГБУН НИОХ СО - РАН.

Тема диссертационной работы утверждена на заседании Ученого Совета НИОХ СО РАН (протокол №6 от 5 сентября 2017 г.).

Научный руководитель – д.х.н. Яровая Ольга Ивановна занимает должность ведущего научного сотрудника ЛФАВ НИОХ СО РАН.

Отзыв рецензента д.х.н., проф. заведующего кафедрой «Органическая химия» ВолгГТУ Навроцкого Максима Борисовича на диссертационную работу – положительный.

При обсуждении диссертационной работы на заседании семинара Отдела медицинской химии были заданы следующие вопросы:

- 1) Как было доказано, что разрыв бициклического остова (+)-камфоры сопровождается разрывом связи C_1 - C_2 в бициклическом остове?
- 2) Доказывают ли эксперименты ЭПР строение образуемых радикальных частиц?
- 3) Есть ли предположения о механизме действия соединений на биологическую мишень? Известно ли механизмы действия препаратов сравнения на данные биологические мишени?
- 4) Как синтезированные соединения будут работать на живых системах?
- 5) Пробовали ли делать сокристаллизацию соединений с хиральными соединениями?
- 6) Как была установлена абсолютная конфигурация в бензоазолах 9а-11а?
- 7) Продукт взаимодействия о-фенилендиамина с камфоленовым альдегидом будет иметь такую же структуру, как целевые соединения?
- 8) Как зависели выходы целевых соединений от структуры исходных соединений?
- 9) На каких клеточных линиях измеряли цитотоксичность целевых соединений?
- 10) Является ли штамм H1N1 вируса гриппа А римантадин-устойчивым?
- 11) Имеются ли другие препараты сравнения для демонстрации противовирусной активности целевых соединений?
- 12) Чем объясняется расположение атома азота в соединении 21 в образовавшемся цикле и чем подтверждается его строение?

По итогам обсуждения принято следующее заключение:

Диссертационная работа Чернышова В.В. посвящена направленному синтезу новых гетероциклических азотсодержащих соединений на основе бициклических монотерпеноидов (+)-камфоры, (-)-фенхона, и их производных – (+)-камфорной кислоты, (+)-кетопиновой кислоты и (+)- α -камфоленовой кислоты. Предложены эффективные подходы к синтезу азотсодержащих гетероциклических соединений на основе указанных монотерпеноидов, в том числе соединений, содержащих спиробициклохиназолиноновый и азепино[2,1-b]хиназолиновый структурные фрагменты.

Актуальность темы

Одним из направлений современной органической химии является изучение синтетических трансформаций оптически активных природных соединений, которые обладают доступной сырьевой базой. В качестве таких соединений широко используются

монотерпеноиды и их производные. Направленное введение азотсодержащих и гетероциклических фрагментов в молекулы бициклических монотерпеноидов представляет интерес в контексте создания новых селективных терапевтически значимых агентов и может рассматриваться как многообещающий подход к синтезу соединений, обладающих биологической активностью в сочетании с низкой токсичностью. Разработка подходов к синтезу хиральных азотсодержащих гетероциклических соединений из бициклических монотерпеноидов и их производных для последующего изучения их биологической активности представляется актуальной.

Научная новизна работы

Впервые разработаны подходы к синтезу азотсодержащих гетероциклических производных (+)-камфоры, (-)-фенхона, (+)-камфорной, (+)-кетопиновой и (+)-с-камфоленовой кислот.

В результате проведенных исследований предложены подходы к синтезу новых гетероциклических соединений, включающих гетероциклическую систему бензоазола, хиназолина, оксадиазола, тиадиазола, пиримидина, имидазола и 3-азабицикло[3.2.1]октан-2,4-диона из [2.2.1]-бициклических кетонов.

Показано, что реакция [2.2.1]-бициклических кетонов (из (+)-камфоры и ее структурных аналогов) с *о*-замещенными анилинами, сопровождается раскрытием бициклического остова кетона и образованием 2-замещенных бензоазолов. На основании физико-химических исследований предложен механизм нового превращения.

Установлено, что реакция (–)-фенхона с антраниламидом сопровождается образованием спироциклического производного, содержащего ядро хиназолина. Исследована кристаллическая структура спироциклических хиназолинонов.

Показана возможность конструирования 1,2,4-оксадиазольного, 1,3,4-оксадиазольного и 1,3,4-тиадиазольного ядра из карбоксильной группы (+)-α-камфоленовой кислоты. Предложен однореакторный метод синтеза оптически активных соединений, содержащих пяти- и шестичленные гетероциклы с двумя атомами азота.

Теоретическая значимость работы

Полученный комплекс экспериментальных данных вносит существенный вклад в теоретические представления о диапазоне реакционной способности монотерпеноидов Выявлены закономерности реакций [2.2.1]-бициклических кетонов с о-функционализированными (ОН, SH, NH₂) анилинами, сопровождающихся разрывом бициклического остова исходных кетонов.

Практическая значимость работы

Широкое варьирование реагентов и условий реакций привело к созданию химических библиотек ранее неизвестных биологически активных соединений.

активности синтезированных противовирусной соединений нии Эпидемиологии и Вирусологии им. сотрудниками Пастера (Санкт-Петербург) и сотрудниками института медицинских исследований Rega Prof. J. Neyts, Dr. D. Jochmans, C. Collard (Лёвен, Бельгия). Обнаружена потенциальных противовирусных агентов на основе 1,2,4-оксадиазолов, содержащих в положении С-5 бициклический фрагмент (+)-камфоры. Показано, что имид (+)-камфорной кислоты, содержащий 3,5-ди-трет-бутил-4-гидроксифенилпропильный заместитель, обладает противовирусной активностью в отношении флавивирусов (вируса Зика и вируса желтой лихорадки) и низкой токсичностью in vitro, что делает его перспективным для дальнейших исследований. Найдено полициклическое соединение-лидер, содержащее хиназолиноновый структурный фрагмент, с противовирусной активностью в отношении нескольких штаммов вируса гриппа A (H1N1, H3N2, H5N2).

Полученные результаты по противовирусной активности синтезированных азотсодержащих гетероциклических соединений, доступность исходных веществ, приемлемые выходы и масштабируемость изученных превращений позволяют считать рассматриваемые подходы перспективными в дизайне новых фармакологических агентов.

Методология и методы исследования. В ходе выполнения работы использовались современные методы органического синтеза, в частности, реакции циклизации, циклоконденсации, окисления, восстановления, нуклеофильного замещения. Разделение реакционных смесей, выделение и очистка соединений осуществлялись методами экстракции, хроматографии и кристаллизации, в том числе со-кристаллизации с солями переходных металлов. В работе использовались физико-химические методы установления структуры и чистоты химических соединений: ЯМР, масс-спектрометрия высокого разрешения, РСА, ГЖХ-МС, поляриметрия.

Степень достоверности. Высокая достоверность полученных результатов обеспечена тщательностью выполнения экспериментов и использованием современных физико-химических методов исследования структур получаемых соединений. Строение всех впервые синтезированных веществ доказано методами ¹H, ¹³C ЯМР и масс-спектрометрии высокого разрешения. Методом РСА подтверждена молекулярная структура для 8 новых соединений.

Диссертационная работа соответствует специальности 1.4.3 - Органическая химия.

Результаты могут быть использованы в научно-исследовательской практике НИОХ СО РАН, а также в лабораториях других научных организаций (Институте

органической химии им. Н.Д. Зелинского РАН, Институте катализа СО РАН, Институте органической и физической химии им. А.Е. Арбузова КНЦ РАН, УФИЦ РАН (г. Уфа), Институте нефтехимии и катализа РАН (г. Уфа), Институте неорганической химии им. А.В. Николаева СО РАН (г. Новосибирск)).

Полнота опубликования результатов. По теме диссертационной работы опубликовано 4 статьи в рецензируемых международных изданиях и тезисы 6 докладов на российских и международных конференциях. Получен патент РФ.

Статьи в рецензируемых журналах:

- V.V. Chernyshov, O.I. Yarovaya, D.S. Fadeev, Yu.V. Gatilov, Ya.L. Esaulkova, A.S. Muryleva, K.O. Sinegubova, V.V. Zarubaev, N.F. Salakhutdinov. Single-stage synthesis of heterocyclic alkaloid-like compounds from (+)-camphoric acid and their antiviral activity.
 Molecular Diversity. 2020. V. 24. P. 61–67.
- V.V. Chernyshov, Y.V. Gatilov, O.I. Yarovaya, I.P. Koskin, S.S. Yarovoy, K.A. Brylev, N.F. Salakhutdinov. The first example of the stereoselective synthesis and crystal structure of a spirobicycloquinazolinone based on (-)-fenchone and anthranilamide. *Acta* Crystallographica Section C. – 2019. – V. C75. – Part 12. – P. 1675-1680.
- V.V. Chernyshov, O.I. Yarovaya, R.Yu. Peshkov, N.F. Salakhutdinov. Synthesis of cyclic D-(+)-camphoric acid imides and study of their antiviral activity. *Chem. Heterocyclic Compd.* – 2020. – V. 56. – N 6. – P. 763-768.
- V.V. Chernyshov, O.I. Yarovaya, S.Z. Vatsadze, S.S. Borisevich, S.N. Trukhan, Yu.V. Gatilov, R.Yu. Peshkov, I.V. Eltsov, O.N. Martyanov, N.F. Salakhutdinov. Unexpected ring opening during the imination of camphor-type bicyclic ketones. *Eur. J. Org. Chem.* 2021.

 N 3. P. 452-463.

Патент РФ:

Патент РФ 2 664 331 О.И. Яровая, В.В. Чернышов, А.А. Штро, В.В. Зарубаев, Н.Ф. Салахутдинов.
 6,13,13-Триметил-6,8,9,12-тетрагидро-6,9-метаноазепино[2,1-b]хиназолин-10(7H)-он в качестве ингибитора вирусов гриппа А, по заявке № 2017137217 от 23.02.2017. Опубликовано: 16.08.2018. Бюл. №23.

Материалы диссертационной работы представлены на конференциях:

- В.В. Чернышов, О.И. Яровая, Н.Ф. Салахутдинов. Синтез новых гетероциклических производных на основе камфоры и фенхона. Тезисы докладов Всероссийской молодежной школы-конференция «Успехи синтеза и комплексообразования». 2016. – т. 1. – С.73. 25-28 апреля 2016 г, Москва, Россия (устный доклад).
- 7. В.В. Чернышов, О.И. Яровая, Н.Ф. Салахутдинов. Синтез новых гетероциклических производных из 2-замещенных анилинов и природных каркасных кетонов. Тезисы

- докладов международной научной конференции «Химическая биология», посвященная 90-летию Академика Кнорре. 2016. С.197. 24-28 июля 2016 г, Новосибирск, Россия, (стендовый доклад).
- 8. В.В. Чернышов, О.И. Яровая, Н.Ф. Салахутдинов. Синтез новых гетероциклических производных на основе карбонильных соединений терпенового ряда. Тезисы докладов XX молодежной школы-конференции по органической химии. 2017. С.75. 18-21 сентября 2017 г, Казань, Россия (устный доклад).
- 9. В.В. Чернышов, О.И. Яровая, В.В. Зарубаев, Н.Ф. Салахутдинов. Синтез новых гетероциклических производных камфорной кислоты и их противовирусная активность. Тезисы докладов V Междисциплинарной конференции «Молекулярные и биологические аспекты химии, фармацевтики и фармакологии, МОБИ-ХимФарма2019.» 2019. С.108. 15-18 сентября 2019 г, Судак, Крым, Россия (устный доклад).
- 10. В.В. Чернышов, О.И. Яровая, В.В. Зарубаев, Н.Ф. Салахутдинов. Synthesis of new biologically active (+)-camphoric acid heterocyclic derivatives. Тезисы докладов 4-ой Российской конференции по медицинской химии с международным участием, МедХим-Россия. 2019. С.337. Екатеринбург, Россия (стендовый доклад).
- 11. В.В. Чернышов, О.И. Яровая, С.С. Борисевич, С.З. Вацадзе, С.Н. Трухан, Ю.В. Гатилов, О.Н. Мартьянов, Н.Ф. Салахутдинов. Синтез азотсодержащих гетероциклических соединений из бициклических кетонов. Тезисы докладов XXII Международной научно-практической конференции студентов и молодых ученых «Химия и химическая технология в XXI веке» XXT-2021. С. 264-265. 17-20 мая 2021 г., Томск, Россия, (устный доклад).

Вклад соискателя в публикациях. В публикациях 1,3,4,5,6-11 вклад, внесенный соискателем в выполнение экспериментальной работы, обсуждение результатов химического эксперимента и подготовку материала к публикации, является основным. В работе 2 соискатель выполнил синтез и кристаллизацию нового соединения и осуществлял подготовку научной публикации, для которого в центре спектральных исследований проведено рентгеноструктурное исследование.

Представленные в работе результаты получены автором или при его непосредственном участии. Соискателем осуществлены поиск, анализ и обобщение научной литературы по теме диссертации, планирование и проведение всех химических экспериментов, хроматографическое разделение реакционных смесей, выделение и очистка новых соединений, а также структурная идентификация новых веществ с использованием спектральных данных. Автором внесен существенный вклад в

формирование общего направления работы и подготовку научных публикаций по теме исследования. Соискатель осуществлял подготовку всех публикаций к печати и представлял доклады по теме диссертационной работы на научных конференциях.

Опубликованные работы достаточно полно отражают содержание диссертационной работы.

Во время выполнения диссертационной работы Чернышов В.В. проявил себя самостоятельным и квалифицированным исследователем. В период обучения в аспирантуре Чернышов В.В. занимался педагогической практикой в должности преподавателя кафедры химии СУНЦ НГУ, проводил семинарские занятия по курсу «Органическая химия» у студентов 2-ого курса ИМПЗ НГУ.

Чернышов В.В. является исполнителем гранта РФФИ № 19-33-90080.

Диссертационная работа «Синтез новых гетероциклических соединений с одним и двумя атомами азота из [2.2.1]-бициклических кетонов и их производных» Чернышова Владимира Владимировича рекомендуется к защите на соискание ученой степени кандидата химических наук по специальности 1.4.3 – органическая химия.

Заключение принято на заседании семинара отдела медицинской химии ФГБУН Новосибирского института органической химии им. Н.Н. Ворожцова СО РАН.

Присутствовало на заседании $\underline{42}$ чел., в том числе $\underline{18}$ кандидатов наук и $\underline{12}$ докторов наук. Результаты голосования: «за» - $\underline{42}$ чел., «против» - нет, «воздержалось» - нет, протокол № 2 от 16.06.2021 года.

Председатель семинара, Зав. лаборатории медицинской химии НИОХ СО РАН д.х.н., профессор

Шульц Э.Э.

Кильметьев А.С.

Секретарь семинара

16.06.2021 года.